skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multiaxial plasticity and fatigue life prediction in coiled tubing

Conference ·
OSTI ID:522438
 [1]
  1. Univ. of Tulsa, OK (United States). Mechanical Engineering Dept.

Coiled tubing is being used increasingly in the oil well drilling and servicing industry. Continuous steel tubing of structural dimensions (up to 89 mm or 3.5 in. in diameter) is wound onto a large-diameter reel for repeated deployment into and out of a well bore. The bending strain range associated with each wrap-unwrap cycle can exceed 3% with lives well below 100 cycles. During constant internal pressure fatigue testing, tubing has been observed to grow in diameter by as much as 30%. This paper describes an analytical model to predict the fatigue behavior of coiled tubing subjected to variable pressure service conditions. The approach utilizes standard low-cycle fatigue data but requires additional experimental results from constant pressure fatigue testing. The algorithm is based on estimates of biaxial ratcheting from an incremental plasticity model using a hybrid associated flow rule, a modified kinematic hardening rule with multiple von Mises yield surfaces, and a specialized limit surface concept. An empirical damage parameter was formulated based on constant pressure fatigue data using mean and fluctuating von Mises equivalent strain components occurring throughout the life of a section of tubing. This parameters is used with the Palmgren-Miner definition of cumulative damage to track damage that is accumulating nonlinearly under constant or variable pressure histories. Modifications to standard incremental plasticity components and implementation assumptions used to apply the model are presented and discussed. The predictive capability of the model is demonstrated relative to data generated under constant and variable pressure histories.

OSTI ID:
522438
Report Number(s):
CONF-940517-; TRN: IM9739%%159
Resource Relation:
Conference: 3. symposium on advances in fatigue lifetime predictive techniques, Montreal (Canada), 16-17 May 1994; Other Information: PBD: 1996; Related Information: Is Part Of Advances in fatigue lifetime predictive techniques. Volume 3; Mitchell, M.R. [ed.] [Rockwell Science Center, Thousand Oaks, CA (United States)]; Landgraf, R.W. [ed.] [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)]; PB: [355] p.; ASTM STP 1292
Country of Publication:
United States
Language:
English

Similar Records

Multiaxial cyclic ratcheting in coiled tubing -- Part 1: Theoretical modeling
Journal Article · Sat Apr 01 00:00:00 EST 2000 · Journal of Engineering Materials and Technology · OSTI ID:522438

Collapse pressure of coiled tubing
Book · Sun Sep 01 00:00:00 EDT 1996 · OSTI ID:522438

Multiaxial creep–fatigue Life Prediction Under Variable Amplitude Loading at High Temperature
Journal Article · Fri Mar 15 00:00:00 EDT 2019 · Journal of Materials Engineering and Performance · OSTI ID:522438