skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cessation of environmentally-assisted cracking in a low-alloy steel: Theoretical analysis

Conference ·
OSTI ID:484527

Environmentally Assisted Cracking (EAC) can cause increases in fatigue crack growth rates of 40 to 100 times the rate in air for low alloy steels. The increased rates can lead to very large predicted crack growth. EAC is activated by a critical level of dissolved sulfides at the crack tip. Sulfide inclusions (MnS) in the steel produce corrosive sulfides in solution following exposure by a growing crack. In stagnant, low oxygen water conditions considered here, diffusion is the dominant mass transport mechanism acting to change the sulfide concentration within the crack. The average crack tip velocity is below the level required to produce the critical crack tip sulfide ion concentration required for EAC. Crack extension analyses also consider the breakthrough of large, hypothetical embedded defects with the attendant large freshly exposed sulfide inventory. Combrade et al. noted that a large inventory of undissolved metallurgical sulfides on crack flanks could trigger EAC, but did not quantify the effects. Diffusion analysis is extended herein to cover breakthrough of embedded defects with large sulfide inventories. The mass transport via diffusion is limited by the sulfide solubility. As a result, deep cracks in high sulfur steels are predicted to retain undissolved sulfides for extended but finite periods of time t{sub diss} which increase with the crack length and the metallurgical sulfide content in the steel. The analysis shows that the duration of EAC is limited to t{sub diss} providing V{sub eac}, the crack tip velocity associated with EAC is less than V{sub In}, the crack tip velocity below which EAC will not occur in an initially sulfide free crack. This condition on V{sub eac} need only be met for a short time following crack cleanup to turn off EAC. The predicted crack extension due to limited duration of EAC is a small fraction of the initial embedded defect size and would not greatly change calculated crack depths.

Research Organization:
Westinghouse Electric Corp., West Mifflin, PA (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Nuclear Energy, Washington, DC (United States)
DOE Contract Number:
AC11-93PN38195
OSTI ID:
484527
Report Number(s):
WAPD-T-3126; CONF-970726-5; ON: DE97002834; TRN: 97:010893
Resource Relation:
Conference: American Society of Mechanical Engineers (ASME) pressure vessel and piping conference, Orlando, FL (United States), 27 Jul - 1 Aug 1997; Other Information: PBD: 1997
Country of Publication:
United States
Language:
English