skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of ozone on macrophage adhesion in vitro and epithelial and inflammatory responses in vivo: The role of cytokines

Journal Article · · Journal of Toxicology and Environmental Health
OSTI ID:456713
;  [1]
  1. Univ. of California, Irvine, CA (United States)

Inhalation exposure to ozone (O{sub 3}) is known to induce epithelial and inflammatory changes in the lungs, characterized by neutrophilia and changes in epithelial permeability. Several cell types and their soluble mediators, including interleukin-1 (IL-1) and tumor necrosis factor-{alpha} (TNF-{alpha}), are involved in the evolution of these responses. In this study, we have compared the effects of the combination of anti-IL-1{alpha} on in vitro and in vivo responses to inhaled O{sub 3}. Male, Sprague-Dawley rats were exposed, nose-only, to 0.8 ppm O{sub 3} for 3 h and the in vitro and in vivo parameters were measured 8-12 h following exposure. In vitro studies revealed the adherence of inflammatory cells, primarily macrophages, harvested from the lungs of O{sub 3}-exposed rats to cultured lung epithelial cells (ARL-14) was significantly greater than adherence of macrophages from air-exposed controls. Furthermore, this adherence was significantly reduced in antibody-treated cells as compared to cells treated with preimmune rabbit serum. In vivo, elevations were found in the percentage of neutrophils in bronchoalveolar lavage fluid (BALF), transport of {sup 99m}Tc-diethylenetriaminepentaacetate (DTPA) across the tracheal epithelium, and concentrations of total protein and albumin in BALF following O{sub 3} exposure. However, these effects were not significantly altered by treatment. Therefore, it was concluded that O{sub 3} affects the early stages of the inflammatory response, particularly with respect to macrophage activation and adherence to epithelial cells, and that this early response may be mediated by IL-1{alpha} and/or TNF-{alpha}. The results also suggest that the in vivo effects of O{sub 3} are controlled by complex mechanisms involving factors other than IL-1{alpha} and TNF-{alpha}, even though these cytokines are capable of modifying macrophage function as revealed by the in vitro adherence studies. 33 refs., 5 figs.

OSTI ID:
456713
Journal Information:
Journal of Toxicology and Environmental Health, Vol. 50, Issue 2; Other Information: PBD: Feb 1997
Country of Publication:
United States
Language:
English