skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of different slow wave structures and finite magnetic field on microwave emission in a BWO

Conference ·
OSTI ID:435515
;  [1]; ; ;  [2]
  1. Texas Tech Univ., Lubbock, TX (United States). Dept. of Electrical Engineering
  2. Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering

In a Backward Wave Oscillator (BWO) an electron beam, guided by a strong applied magnetic field, flows into a waveguide with periodic ripple imposed on its wall. The periodic ripple in the waveguide causes oscillations in the electron beam to grow and allows high power microwave radiation to be extracted. Although a variety of slow wave structures have been used to produce high power microwaves in BWOs, no systematic study has been done to determine the effects of the shape of slow wave structure. The authors have carried out computer simulations, using the PIC mode MAGIC, to study these effects by using sinusoidal, square well, and saw tooth ripple structures along the waveguide. Electrons are emitted as a beam at the entrance of the waveguide at a fraction of the space charge limiting current with energy on the order of 1 MeV. Ripple amplitudes are set less than 5 mm with a period of between 5 mm to 15 mm. The waveguide has typical radius between 10 mm to 25 mm. Preliminary results suggest that in smoothly varying ripples, such as sinusoidal ripples, less output microwave power is produced than in angular structures, such as square well ripples. Since the UNM long-pulse BWO experiment has produced higher output microwave power by using nonuniform slow wave structures, particle simulations have also been carried out to examine effects of shape of nonuniform structures as well. Simulations are also in progress to study the effects of applied magnetic field strength on microwave emission in BWOs.

OSTI ID:
435515
Report Number(s):
CONF-960634-; TRN: IM9710%%173
Resource Relation:
Conference: 1996 IEEE international conference on plasma science, Boston, MA (United States), 3-5 Jun 1996; Other Information: PBD: 1996; Related Information: Is Part Of IEEE conference record -- Abstracts: 1996 IEEE international conference on plasma science; PB: 324 p.
Country of Publication:
United States
Language:
English