skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Differential responses of certain lichen species to sulfur-containing solutions under acidic conditions as expressed by the production of stress-ethylene

Journal Article · · Environmental Research
 [1]; ;  [2]
  1. Tel Aviv Univ. (Israel)
  2. Univ. of Oulu (Finland)

To determine whether fluctuations in the concentration of ethylene produced by lichens exposed to sulfur-containing solutions at a low pH correlate with the tolerance/sensitivity of these lichens to air pollution, we measured the amount of ethylene produced by thalli soaked in H{sub 2}SO{sub 4} and NaHSO{sub 3}. The exposure of Hypogymnia physodes, Cladina stellaris, and Bryoria fuscescens to H{sub 2}SO{sub 4} at a pH ranging between 4.0 and 2.0 did not produce changes in the concentration of ethylene in comparison with samples wetted with H{sub 2}O at pH 6.8. The exposure of two pendulous lichens, Usnea hirta and Alectoria sarmentosa, to 1.0 and 5.0 mM H{sub 2}SO{sub 4} at pH 2.7 and 2.0, respectively, stimulated only a slight increase of ethylene production, whereas another pendulous lichen, Bryoria fremontii, exposed to H{sub 2}SO{sub 4} at pH 4.0-2.0 decreased its production of ethylene. The soaking of H. physodes, U. hirta, C. stellaris, and A. sarmentosa thalli in NaHSO{sub 3} at pH 4.0 gradually increased the production of ethylene. The exposure of B. fremontii and B. fuscescens to low NaHSO{sub 3} concentrations depressed the production of ethylene in these lichens. The indifference of H. physodes to H{sub 2}SO{sub 4} under strong acidic conditions correlated with its resistance to SO{sub 21} in the air. In accordance with a model by D.M. Reid (In {open_quotes}Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. NATO ASI Series, Springer-Verlag, Berlin and Heidelberg, 1987) referring to higher plants, it is suggested that sulfur-containing solutions under acidic conditions increase the solubility of particles containing heavy metals entrapped among the mycobiont hyphae in lichens. This may lead to an increase of the production of endogenous ethylene in lichens as they are exposed to sulfur-containing chemicals, to acidic rain, or to heavy metal-polluted air. 65 refs., 8 tabs.

OSTI ID:
426057
Journal Information:
Environmental Research, Vol. 69, Issue 2; Other Information: PBD: May 1995
Country of Publication:
United States
Language:
English