skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact properties and hardening behavior of laser and electron-beam welds of V-4Cr-4Ti

Technical Report ·
DOI:https://doi.org/10.2172/415825· OSTI ID:415825

The authors are conducting a program to develop an optimal laser welding procedure that can be applied to large-scale fusion-reactor structural components to be fabricated from vanadium-base alloys. Results of initial investigation of mechanical properties and hardening behavior of laser and electron-beam (EB) welds of the production-scale heat of V-4Cr-4Ti (500-kg Heat 832665) in as-welded and postwelding heat-treated (PWHT) conditions are presented in this paper. The laser weld was produced in air using a 6-kW continuous CO{sub 2} laser at a welding speed of {approx}45 mm/s. Microhardness of the laser welds was somewhat higher than that of the base metal, which was annealed at a nominal temperature of {approx}1050{degrees}C for 2 h in the factory. In spite of the moderate hardening, ductile-brittle transition temperatures (DBTTs) of the initial laser ({approx}80{degrees}C) and EB ({approx}30{degrees}C) welds were significantly higher than that of the base metal ({approx}{minus}170{degrees}C). However, excellent impact properties, with DBTT < {minus}80{degrees}C and similar to those of the base metal, could be restored in both the laser and EB welds by postwelding annealing at 1000{degrees}C for 1 h in vacuum.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
OSTI ID:
415825
Report Number(s):
DOE/ER-0313/20; ON: DE97000700; TRN: 97:001879
Resource Relation:
Other Information: PBD: Oct 1996; Related Information: Is Part Of Fusion materials semiannual progress report for the period ending June 30, 1996; PB: 358 p.
Country of Publication:
United States
Language:
English