skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Corrosion of lithium-ion battery current collectors

Journal Article · · Journal of the Electrochemical Society
DOI:https://doi.org/10.1149/1.1391627· OSTI ID:328199

The primary current-collector materials being used in lithium-ion cells are susceptible to environmental degradation: aluminum to pitting corrosion and copper to environmentally assisted cracking. Localized corrosion occurred on bare aluminum electrodes during simulated ambient-temperature cycling in an excess of electrolyte. The highly oxidizing potential associated with the positive-electrode charge condition was the primary factor. The corrosion mechanism differed from the pitting typically observed in aqueous electrolytes because each site was filled with a mixed metal/metal-oxide product, forming surface mounds or nodules. Electrochemical impedance spectroscopy was shown to be an effective analytical tool for characterizing the corrosion behavior of aluminum under these conditions. Based on X-ray photoelectron spectroscopy analyses, little difference existed in the composition of the surface film on aluminum and copper after immersion or cycling in LiPF{sub 6} electrolytes made with two different solvent formulations. Although Li and P were the predominant adsorbed surface species, the corrosion resistance of aluminum may simply be due to its native oxide. Finally, copper was shown to be susceptible to environmental cracking at or near the lithium potential when specific metallurgical conditions existed (work hardening and large grain size).

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
328199
Journal Information:
Journal of the Electrochemical Society, Vol. 146, Issue 2; Other Information: PBD: Feb 1999
Country of Publication:
United States
Language:
English