skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamical processes in undisturbed katabatic flows

Conference ·
OSTI ID:277084
;  [1]; ;  [2]
  1. Los Alamos National Lab., NM (United States)
  2. Colorado State Univ., Fort Collins, CO (United States)

Idealized analytical investigations of katabatic slope flows have usually sought to simplify the analysis by either assuming a particular force balance amenable to analytical solution or using integral (or bulk) models. In each case, steady state conditions are evaluated, with occasional exception. Historically, the modeling of idealized katabatic flows has focused analysis of model time where steady state conditions have been achieved. To investigate the true dynamics of evolving undisturbed katabatic flow, the Regional Atmospheric Modeling System (RAMS) is used. As described in Pielke et al (1992) RAMS is a prognostic numerical model that contains the three-dimensional primitive equations in terrain-following, non- hydrostatic, compressible form. In addition to standard variables, RAMS was configured to output the various components of the governing equations with high temporal resolution. Each of the simulations used idealized 2000m high mountain topography of a given slope (1{degree}, 2.5{degrees},5{degrees}, or 10{degrees}) on either side of the peak. In the 3-d simulations this mountain becomes an infinite north-south ridge (cyclic boundary conditions in the N-S direction). Vertical grid spacing was set to 20m for the first 500m {delta}z increases to a maximum of 400 m over 72 grid points to 10.5 km. Horizontal grid spacing was 500 m and the number of east-west grid points was 701, 301, 201 and 201 for the 1 {degree}, 2.5{degrees}, 5{degrees} and 10{degrees} mountains, respectively. Only results from the homogeneous with a vertical structure as follows: 0.0 m s{sup -1} to 3000 m AGL, standard atmospheric {theta} lapse rate of 2.5 K km {sup - 1} to 3000 m AGLl, standard atmospheric {theta} lapse rate of 3.4 K Km {sup -1} above that. The simulations ran for 12 hours after model sunset ({similar_to}1800 MST) so that only longwave radiative effects were active.

Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
277084
Report Number(s):
LA-UR-96-1496; CONF-9609170-2; ON: DE96010380
Resource Relation:
Conference: 7. conference on mesoscale processes, Reading (United Kingdom), 9-13 Sep 1996; Other Information: PBD: [1996]
Country of Publication:
United States
Language:
English