skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coliquefaction of waste rubber tires with coal

Conference ·
OSTI ID:254839
;  [1]
  1. Univ. of Utah, Salt Lake City, UT (United States); and others

There is an interest in the conversion of coal to liquid fuels because of the abundant supply of coal and the diminishing reserves of petroleum. Standard coal liquefaction techniques utilize H{sub 2} gas as a source of hydrogen to cap the radical species produced during liquefaction. Waste materials such as plastics, oils, and rubber tires with a high hydrogen content could be an alternative source of hydrogen that, in principle, could be transferred from the waste materials to the coal during liquefaction. An added benefit of such a program of waste material utilization would be a diminution in materials disposed of in landfills or incinerators. Rubber tires are approximately one third by weight carbon black. Farcasiu and Smith have shown that carbon black increases yields in coal liquefaction. Since carbon black is one of the top fifty chemicals produced in America during 1993 (3.22 billion pounds) the recovery and reuse of carbon black from tires could become economically attractive. Giavarini has shown in recent work that carbon black could be reclaimed and activated to produce quality carbon blacks after pyrolyzing waste rubber tires. Rubber tires also contain zinc oxide which is added as a filler and also aids in the vulcanization of the rubber. Waste plastics contain many metals used for coloring, waste oils contain metals acquired while used as a lubricant, and waste rubber tires contain zinc. A past investigation suggested that coal undergoing liquefaction may act as a {open_quotes}scavenger{close_quotes} for heavy metals. The ability of coal to trap metals will be discussed in the present paper. Electron probe microanalysis (EPMA) is a technique which can map the dispersion of an element within a sample by the detection of characteristic X-rays. Using EPMA, samples of the insoluble fraction produced by the coliquefaction experiments were analyzed to determine whether several heavy elements of interest were trapped in coal particles.

OSTI ID:
254839
Report Number(s):
CONF-940813-; TRN: 96:003482-0198
Resource Relation:
Conference: 208. American Chemical Society (ACS) national meeting, Washington, DC (United States), 21-26 Aug 1994; Other Information: PBD: 1994; Related Information: Is Part Of 207th ACS national meeting. Volume 39, Nos. 1, 2, 3 and 4; PB: 1304 p.
Country of Publication:
United States
Language:
English