skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vascular endothelial and smooth muscle cell galvanotactic response and differential migratory behavior

Journal Article · · Experimental Cell Research

Chronic disease or injury of the vasculature impairs the functionality of vascular wall cells particularly in their ability to migrate and repair vascular surfaces. Under pathologic conditions, vascular endothelial cells (ECs) lose their non-thrombogenic properties and decrease their motility. Alternatively, vascular smooth muscle cells (SMCs) may increase motility and proliferation, leading to blood vessel luminal invasion. Current therapies to prevent subsequent blood vessel occlusion commonly mechanically injure vascular cells leading to endothelial denudation and smooth muscle cell luminal migration. Due to this dichotomous migratory behavior, a need exists for modulating vascular cell growth and migration in a more targeted manner. Here, we examine the efficacy of utilizing small direct current electric fields to influence vascular cell-specific migration (“galvanotaxis”). We designed, fabricated, and implemented an in vitro chamber for tracking vascular cell migration direction, distance, and displacement under galvanotactic influence of varying magnitude. Our results indicate that vascular ECs and SMCs have differing responses to galvanotaxis; ECs exhibit a positive correlation of anodal migration while SMCs exhibit minimal change in directional migration in relation to the electric field direction. SMCs exhibit less motility response (i.e. distance traveled in 4 h) compared to ECs, but SMCs show a significantly higher motility at low electric potentials (80 mV/cm). With further investigation and translation, galvanotaxis may be an effective solution for modulation of vascular cell-specific migration, leading to enhanced endothelialization, with coordinate reduced smooth muscle in-migration.

OSTI ID:
23195384
Journal Information:
Experimental Cell Research, Vol. 399, Issue 1; Other Information: Copyright (c) 2020 Elsevier Inc. All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0014-4827
Country of Publication:
United States
Language:
English

Similar Records

Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation
Journal Article · Fri Apr 20 00:00:00 EDT 2012 · Biochemical and Biophysical Research Communications · OSTI ID:23195384

Contact-mediated and humoral communication between vascular endothelial and smooth muscle cells in vitro
Conference · Sat Mar 01 00:00:00 EST 1986 · Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States) · OSTI ID:23195384

Endothelial cells control vascular smooth muscle cell cholesterol levels by regulating 24-dehydrocholesterol reductase expression
Journal Article · Mon Feb 15 00:00:00 EST 2021 · Experimental Cell Research · OSTI ID:23195384