skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation and properties of novel artificially-layered cuprate superconductors using pulsed-laser deposition

Conference ·
OSTI ID:230608

Pulsed-laser deposition and epitaxial stabilization have been effectively used to engineer artificially-layered thin-film materials. Novel cuprate compounds have been synthesized using the constraint of epitaxy to stabilize (Ca,Sr)CuO{sub 2}/(Ba,Ca,Sr)CuO{sub 2} superconducting superlattices in the infinite layer structure. Superlattice chemical modulation can be observed from the x-ray diffraction patterns for structures with SrCuO{sub 2} and (Ca, Sr)CuO{sub 2} layers as thin as a single unit cell ({approximately}3. 4 {angstrom}). X-ray diffraction intensity oscillations, due to the finite thickness of the film, indicate that (Ca,Sr)CuO{sub 2} films grown by pulsed-laser deposition are extremely flat with a thickness variation of only {approximately}20 {angstrom} over a length scale of several thousand angstroms. This enables the unit-cell control of (Ca, Sr)CuO{sub 2} film growth in an oxygen pressure regime in which in situ surface analysis using electron diffraction is not possible. With the incorporation of BaCuO{sub 2} layers, superlattice structures have been synthesized which superconduct at temperatures as high as 70 K. Dc transport measurements indicate that (Ca, Sr)CuO{sub 2}/BaCuO{sub 2} superlattices are two dimensional superconductors with the superconducting transition primarily associated with the BaCuO{sub 2} layers. Superconductivity is observed only for structures with BaCuO{sub 2} layers at least two unit cells thick with {Tc} decreasing as the (Ca,Sr)CuO{sub 2} layer thickness increases. Normalized resistance in the superconducting region collapse to the Ginzburg-Landau Coulomb gas universal resistance curve consistent with the two-dimensional vortex fluctuation model.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-96OR22464
OSTI ID:
230608
Report Number(s):
CONF-960163-18; ON: DE96009714
Resource Relation:
Conference: Photonics West `96: conference on quantum well and superlattice physics VI, San Jose, CA (United States), 27 Jan - 2 Feb 1996; Other Information: PBD: Mar 1996
Country of Publication:
United States
Language:
English