skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of Mg Substitution on the Structural and Magnetic Properties of Ni{sub 0.2}Mg{sub x}Co{sub 0.8−x}Fe{sub 2}O{sub 4} Nanoparticle Ferrites

Journal Article · · Journal of Superconductivity and Novel Magnetism
; ; ; ;  [1]
  1. Northwest Normal University, College of Physics and Electronics Engineering (China)

Sol-gel auto-combustion is a method of preparing ferrite by combining combustion with chemical gel. In this study, Ni-Mg-Co ferrite powders are prepared by coprecipitation method, and the nanocrystals of Ni{sub 0.2}Mg{sub x}Co{sub 0.8−x}Fe{sub 2}O{sub 4} are successfully synthesized. The structure and magnetic properties of undoped and Mg-substituted Ni-Co ferrite nanoparticles are systematically investigated. The methods used to characterize the prepared samples are X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and Vibrating sample magnetometry (VSM). The synthesized samples are confirmed by XRD analysis to form a single-phase cubic spinel structure with crystals between 48 and 50 nm. With the increase of Mg ion concentration, the lattice constant decreases. The results of FTIR spectroscopy indicated that a spinel structure was formed. Transmission electron microscopy (TEM) images show spherical cubic microcrystals in the samples. EDX analysis confirms that the synthesized ferrite is pure phase structure, and Mg{sup 2+} is successfully replaced. With the increase of Mg{sup 2+} ion content, the saturation magnetization and remanent magnetization decreased from 70.16 to 39.77 emu/g and 36.40 to 20.20 emu/g at room temperature, respectively. Meanwhile, the coercivity decreases from 1032.16 to 378.50 Oe by increasing Mg{sup 2+} concentration. This also indicates that the Mg-substituted Ni-Co nano-ferrite has a low magnetic of multi-ferric material. The increasing of peak height of dM/dH at H{sub m} indicates that the cubic spinel structure sample has good crystallinity and magnetic stability.

OSTI ID:
22922940
Journal Information:
Journal of Superconductivity and Novel Magnetism, Vol. 32, Issue 8; Other Information: Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature; Country of input: International Atomic Energy Agency (IAEA); ISSN 1557-1939
Country of Publication:
United States
Language:
English