skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charged Grains and Kelvin–Helmholtz Instability in Molecular Clouds

Journal Article · · Astronomical Journal (New York, N.Y. Online)
 [1]
  1. Department of Physics and Astronomy and Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney 2109 (Australia)

The presence of dust grains profoundly affects the diffusion of the magnetic field in molecular clouds. When the electrons and ions are well coupled to the magnetic field and charged grains are only indirectly coupled, emergent Hall diffusion may dominate over all the other non-ideal magnetohydrodynamic (MHD) effects in a partially ionized dusty cloud. The low-frequency, long (∼0.01–1 pc) wavelength dispersive MHD waves will propagate in such a medium with the polarization of the waves determined by the dust charge density or the dust size distribution. In the presence of shear flows, these waves may become Kelvin–Helmholtz unstable with the dust charge density or the grain size distribution operating as a switch to the instability. When Hall diffusion time is long (compared to the time over which waves are sheared), the growth rate of the instability in the presence of sub-Alfvénic flow increases with the charge number |Z| on the grain, while it is quenched in the presence of Alfvénic or super-Alfvénic flows. However, when Hall diffusion is fast, the growth rate of the instability depends on the dust charge only indirectly.

OSTI ID:
22897281
Journal Information:
Astronomical Journal (New York, N.Y. Online), Vol. 157, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1538-3881
Country of Publication:
United States
Language:
English