skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TLR4/MyD88/NF-κB signaling and PPAR-γ within the paraventricular nucleus are involved in the effects of telmisartan in hypertension

Journal Article · · Toxicology and Applied Pharmacology
; ; ; ;  [1];  [2];  [3];  [4];  [5];  [1]
  1. Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061 (China)
  2. Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061 (China)
  3. Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China)
  4. Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061 (China)
  5. Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061 (China)

Previous findings from our laboratory and others indicate that the main therapeutic effect of angiotensin II type 1 receptor (AT1-R) antagonists is to decrease blood pressure and exert anti-inflammatory effects in the cardiovascular system. In this study, we determined whether AT1-R antagonist telmisartan within the hypothalamic paraventricular nucleus (PVN) attenuates hypertension and hypothalamic inflammation via both the TLR4/MyD88/NF-κB signaling pathway and peroxisome proliferator-activated receptor-γ (PPAR-γ) in the PVN in hypertensive rats. Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were treated for 4 weeks through bilateral PVN infusion with the AT1-R antagonist telmisartan (TEL, 10 μg/h), or losartan (LOS, 20 μg/h), or the PPAR-γ antagonist GW9662 (GW, 100 μg/h), or vehicle via osmotic minipump. Mean arterial pressure (MAP) was recorded by a tail-cuff occlusion method. PVN tissue and blood were collected for the measurement of AT1-R, PPAR-γ, pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6), inducible nitric oxide synthase (iNOS), TLR4, MyD88, nuclear factor-kappa B (NF-κB) activity and plasma norepinephrine (NE), respectively. Hypertensive rats exhibited significantly higher level of AT1-R and lower level of PPAR-γ in the PVN. PVN treatment with TEL attenuated MAP, improved cardiac hypertrophy, reduced TNF-α, IL-1β, IL-6, iNOS levels, and plasma NE in SHR but not in WKY rats. These results were associated with reduced TLR4, MyD88 and NF-κB levels and increased PPAR-γ level in the PVN of hypertensive rats. Our findings suggest that TLR4/MyD88/NF-κB signaling and PPAR-γ within the PVN are involved in the beneficial effects of telmisartan in hypertension. - Highlights: • PVN infusion of TEL in spontaneously hypertensive rats is reported. • PVN infusion of TEL attenuates hypertension and proinflammatory cytokines in PVN. • PVN blockade of AT1-R attenuates sympathoexcitation and cardiac hypertrophy. • TLR4/MyD88/NF-κB signaling and PPAR-γ in PVN are involved in the effects of TEL.

OSTI ID:
22689227
Journal Information:
Toxicology and Applied Pharmacology, Vol. 305; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English