skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inelastic effects in molecular transport junctions: The probe technique at high bias

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4944470· OSTI ID:22657843
;  [1]
  1. Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada)

We extend the Landauer-Büttiker probe formalism for conductances to the high bias regime and study the effects of environmentally induced elastic and inelastic scattering on charge current in single molecule junctions, focusing on high-bias effects. The probe technique phenomenologically incorporates incoherent elastic and inelastic effects to the fully coherent case, mimicking a rich physical environment at trivial cost. We further identify environmentally induced mechanisms which generate an asymmetry in the current, manifested as a weak diode behavior. This rectifying behavior, found in two types of molecular junction models, is absent in the coherent-elastic limit and is only active in the case with incoherent-inelastic scattering. Our work illustrates that in the low bias-linear response regime, the commonly used “dephasing probe” (mimicking only elastic decoherence effects) operates nearly indistinguishably from a “voltage probe” (admitting inelastic-dissipative effects). However, these probes realize fundamentally distinct I-V characteristics at high biases, reflecting the central roles of dissipation and inelastic scattering processes on molecular electronic transport far-from-equilibrium.

OSTI ID:
22657843
Journal Information:
Journal of Chemical Physics, Vol. 144, Issue 12; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English