skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methionine sulfoxide reductase B3 deficiency stimulates heme oxygenase-1 expression via ROS-dependent and Nrf2 activation pathways

Journal Article · · Biochemical and Biophysical Research Communications

Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G{sub 1}/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ER stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation. -- Highlights: •MsrB3 depletion induces HO-1 expression. •MsrB3 deficiency increases cellular ROS and ER stress. •MsrB3 deficiency activates Nrf2 by increasing its expression and nuclear import. •MsrB3 attenuates HO-1 induction by inhibiting ROS production and Nrf2 activation.

OSTI ID:
22598711
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 473, Issue 4; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English