skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4948579· OSTI ID:22596934
; ; ;  [1];  [2]
  1. ICube, Université de Strasbourg-CNRS, 23 rue du Loess BP20, 67037 Strasbourg Cedex 2 (France)
  2. IPCMS, Université de Strasbourg-CNRS, 23 rue du Loess BP43, 67034 Strasbourg Cedex 2 (France)

Dopant impurities, such as gallium (Ga), indium (In), and phosphorus (P), were incorporated into silicon-rich silicon oxynitride (SRSON) thin films by the ion implantation technique. To form silicon nanoparticles, the implanted layers were thermally annealed at temperatures up to 1100 °C for 60 min. This thermal treatment generates a phase separation of the silicon nanoparticles from the SRSON matrix in the presence of the dopant atoms. We report on the position of the dopant species within the host matrix and relative to the silicon nanoparticles, as well as on the effect of the dopants on the crystalline structure and the size of the Si nanoparticles. The energy-filtered transmission electron microscopy technique is thoroughly used to identify the chemical species. The distribution of the dopant elements within the SRSON compound is determined using Rutherford backscattering spectroscopy. Energy dispersive X-ray mapping coupled with spectral imaging of silicon plasmons was performed to spatially localize at the nanoscale the dopant impurities and the silicon nanoparticles in the SRSON films. Three different behaviors were observed according to the implanted dopant type (Ga, In, or P). The In-doped SRSON layers clearly showed separated nanoparticles based on indium, InOx, or silicon. In contrast, in the P-doped SRSON layers, Si and P are completely miscible. A high concentration of P atoms was found within the Si nanoparticles. Lastly, in Ga-doped SRSON the Ga atoms formed large nanoparticles close to the SRSON surface, while the Si nanoparticles were localized in the bulk of the SRSON layer. In this work, we shed light on the mechanisms responsible for these three different behaviors.

OSTI ID:
22596934
Journal Information:
Journal of Applied Physics, Vol. 119, Issue 17; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English