skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The physical mechanism on the threshold voltage temperature stability improvement for GaN HEMTs with pre-fluorination argon treatment

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4953573· OSTI ID:22590768
 [1];  [1];  [2];  [3];  [4]
  1. Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119260 (Singapore)
  2. Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)
  3. Industrial Technology Research Institute, Chutung 31040, Taiwan (China)
  4. A*STAR Institute of Microelectronics, Singapore 117685 (Singapore)

In this paper, a normally-off AlGaN/GaN MIS-HEMT with improved threshold voltage (V{sub TH}) thermal stability is reported with investigations on its physical mechanism. The normally-off operation of the device is achieved from novel short argon plasma treatment (APT) prior to the fluorine plasma treatment (FPT) on Al{sub 2}O{sub 3} gate dielectrics. For the MIS-HEMT with FPT only, its V{sub TH} drops from 4.2 V at room temperature to 0.5 V at 200 °C. Alternatively, for the device with APT-then-FPT process, its V{sub TH} can retain at 2.5 V at 200 °C due to the increased amount of deep-level traps that do not emit electrons at 200 °C. This thermally stable V{sub TH} makes this device suitable for high power applications. The depth profile of the F atoms in Al{sub 2}O{sub 3}, measured by the secondary ion mass spectroscopy, reveals a significant increase in the F concentration when APT is conducted prior to FPT. The X-ray photoelectron spectroscopy (XPS) analysis on the plasma-treated Al{sub 2}O{sub 3} surfaces observes higher composition of Al-F bonds if APT was applied before FPT. The enhanced breaking of Al-O bonds due to Ar bombardment assisted in the increased incorporation of F radicals at the surface during the subsequent FPT process. The Schrödinger equation of Al{sub 2}O{sub x}F{sub y} cells, with the same Al-F compositions as obtained from XPS, was solved by Gaussian 09 molecular simulations to extract electron state distribution as a function of energy. The simulation results show creation of the deeper trap states in the Al{sub 2}O{sub 3} bandgap when APT is used before FPT. Finally, the trap distribution extracted from the simulations is verified by the gate-stress experimental characterization to confirm the physical mechanism described.

OSTI ID:
22590768
Journal Information:
Applied Physics Letters, Vol. 108, Issue 23; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English