skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superconductivity in the orthorhombic phase of thermoelectric CsPb{sub x}Bi{sub 4−x}Te{sub 6} with 0.3≤x≤1.0

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [1]; ;  [1]
  1. Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China)

Experimental measurements clearly reveal the presence of bulk superconductivity in the CsPb{sub x}Bi{sub 4−x}Te{sub 6} (0.3≤x≤1.0) materials, i.e. the first member of the thermoelectric series of Cs[Pb{sub m}Bi{sub 3}Te{sub 5+m}], these materials have the layered orthorhombic structure containing infinite anionic [PbBi{sub 3}Te{sub 6}]{sup −} slabs separated with Cs{sup +} cations. Temperature dependences of electrical resistivity, magnetic susceptibility, and specific heat have consistently demonstrated that the superconducting transition in Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} occurs at T{sub c}=3.1 K, with a superconducting volume fraction close to 100% at 1.8 K. Structural study using aberration-corrected STEM/TEM reveals a rich variety of microstructural phenomena in correlation with the Pb-ordering and chemical inhomogeneity. The superconducting material Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} with the highest T{sub c} shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. Our study evidently demonstrates that superconductivity deriving upon doping of narrow-gap semiconductor is a viable approach for exploration of novel superconductors. - Graphical abstract: Bulk superconductivity is discovered in the orthorhombic Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} materials with the superconducting transition T{sub c}=3.1 K. The compound shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. - Highlights: • Bulk superconductivity is discovered in the orthorhombic CsPb{sub x}Bi{sub 4−x}Te{sub 6} materials. • The superconducting transition in Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} occurs at T{sub c}=3.1 K. • Physical property measurements concerning the bulk superconductivity were present. • Structural modulation due to Pb-ordering was observed.

OSTI ID:
22573959
Journal Information:
Journal of Solid State Chemistry, Vol. 232; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English