skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-183: Clinical Quality Assurance Workflow for Dynamic Tumor Tracking Radiation Dose Delivery

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4924544· OSTI ID:22545306
; ;  [1]
  1. University of Florida/Radiation Oncology, Jacksonville, FL (United States)

Purpose: One of the most important aspects of implementation of new treatment modalities is an ‘end-to-end’ verification of the treatment process. Radiation treatment based on dynamic tracking of a tumor is highly patient-specific, therefore, special attention should be paid to quality assurance of the treatment delivery. Our goal was to design the clinical workflow that ensures accurate delivery of the planned dose using the Dynamic Target Tracking option of VeroTM (BrainLab,MHI) linac. Methods: A patient simulation is designed to include a pre-treatment session to verify whether the system can reliably track the motion of the implanted marker and build the 4D model of the target motion. The external surrogate and target motion patterns are recorded in the ExactracTM log files. In this work, a spectrum of custom marker and external surrogate motion trajectories closely resembling the patient specific motion patterns was used. 1mm thick/11mm long VisicoilTM marker was placed 15 and 20mm from the center of the spherical tissue equivalent target (centroid to centroid distance) in the 4D motion phantom (CIRSTM). 3D conformal (3 mm block margin) SBRT plans were delivered to 2 moving targets in the phantom: 1) 20mm diameter target that allows ion chamber dose measurement and 2) 25mm target that allows using film to measure CAX dose (GafchromicTM EBT3 used). The measured dose was compared to the iPlanTM TPS results using MonteCarlo algorithm (1% variance, Dose-to-water). Results: On average, film shows 98.9% pass using gamma criterion for 2% and 2mm DTA, 94.3% match for 2% and 1 mm DTA, 98% pass for 1% and 2 mm DTA however only 88% points passing for 1% and 1 mm DTA. Ion chamber measurements agreed with the calculation within 1.5%. Conclusion: The clinical QA workflow was designed for SBRT delivery using real-time tumor tracking on VeroTM linac.

OSTI ID:
22545306
Journal Information:
Medical Physics, Vol. 42, Issue 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English