skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and Validation Testing of TruckScan to Assay Large Sacks of Fukushima Radioactive Debris on a Truck

Conference ·
OSTI ID:22531313
 [1];  [2]
  1. Canberra-Japan (Japan)
  2. Canberra Industries Inc. (United States)

As a result of the March 2011 earthquake and resulting tsunami in Japan, there was a serious accident at the Fukushima Dai-ichi Nuclear Power Plant. This accident has contaminated soil and vegetation in a wide area around the plant. Decontamination projects over the last 4 years have resulted in large numbers of 1 cubic meter canvas bags of debris, commonly called Super Sacks [SS]. These are currently stored nearby where they were generated, but starting in 2015, they will be moved to various Interim Storage Facilities [ISF]. Trucks will typically carry 8-20 of these SSs. When the trucks arrive at the ISF they need to be rapidly sorted into groups according to radioactivity level, for efficient subsequent processing. Canberra Industries, Inc. [CI] has designed a new truck monitoring system 'TruckScan' for use at these ISFs. The TruckScan system must measure the entire truck loaded with multiple closely packed SSs, and generate a nuclide specific assay report showing the radioactivity in each individual SS. The Canberra-Japan office, along with Obayashi Corporation have performed validation testing to demonstrate to the regulatory authorities that the proposed technique was sufficiently accurate. These validation tests were conducted at a temporary storage area in Fukushima prefecture. Decontaminated waste of various representative types and of various levels of radioactivity was gathered and mixed to create homogeneous volumes. These volumes were sampled multiple times and assayed with laboratory HPGe detectors to determine the reference concentration of each pile. Multiple SSs were loaded from each pile. Some of the SSs were filled 50% full, others 75% full, and others 100% full, to represent the typical loading configuration of the existing SSs in the field. The content of the SSs are either sand, soil, or vegetation with densities ranging from 0.3 g/cc - 1.6 g/cc. These SSs with known concentrations of Cs-134 and Cs-137 were then loaded onto trucks in a variety of configurations, typical of how they might be on the real trucks. A partial system was installed at the site and used to assay these trucks with the various loading configurations. Whereas the full system will have 8 collimated 3 x 3'' NaI detectors, the test system only had two detectors; therefore the truck was moved and counted 4 times. The data were acquired and analyzed with the Canberra Genie software to determine the peak counts for both Cesium nuclides. That data was then analyzed with a prototype version of a Maximum Entropy algorithm, to determine the individual SS activity. The goal of the validation tests was to demonstrate that the system could detect 1000 Bq/kg in 15 seconds, and to determine how accurately it could quantify individual SSs. The validation tests demonstrated that the product would perform as predicted. The TruckScan results were consistent with the sample assay results [y = 1.0029 x, R{sup 2} = 0.914]. The Total Propagated Uncertainty, including both uncertainties from these tests and others that were estimated but not tested was 16.6% percent. (authors)

Research Organization:
Institute of Electrical and Electronics Engineers - IEEE, 3 Park Avenue, 17th Floor, New York, N.Y. 10016-5997 (United States)
OSTI ID:
22531313
Report Number(s):
ANIMMA-2015-IO-266; TRN: US16V0494102254
Resource Relation:
Conference: ANIMMA 2015: 4. International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, Lisboa (Portugal), 20-24 Apr 2015; Other Information: Country of input: France
Country of Publication:
United States
Language:
English