skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Education and training in the field of nuclear instrumentation and measurement: CEA/INSTN (National Institute for Nuclear Sciences and Technologies) strategy to improve and develop new pedagogical tools and methods

Conference ·
OSTI ID:22531279

Part of the French Alternative Energies and Atomic Energy Commission (CEA), the National Institute for Nuclear Science and Technology (INSTN) is a higher education institution whose mission is to provide students and professionals a high level of scientific and technological qualification in all disciplines related to nuclear energy applications. In this frame, INSTN carries out education and training (E and T) programs in nuclear instrumentation and radioprotection. Its strategy has always been to complete theoretical courses by training courses and laboratory works carried out on an extensive range of training tools that includes a large panel of nuclear instrumentation as well as software applications. Since its creation in 1956, the INSTN has conducted both education and vocational programs on ionizing radiation detection. An extensive range of techniques have commonly been used during practical works with students and employees of companies who need to get the knowledge and specialization in this field. Today, the INSTN is mainly equipped with usual detectors and electronics in large numbers in order to be able to accommodate up to 48 trainees at the same time in two classrooms, with only two trainees for one workstation in order to optimize their learning. In the field of the neutron detection systems, the INSTN has strongly developed its offer taking advantage of the use of research reactors, such as ISIS reactor (700 kW) at Saclay. The implementation of neutron detection systems specific to the courses offers a unique way of observing and analysing the signal coming from neutron detectors, as well as learning how to set the parameters of the detection system in real conditions. Providing the trainees with an extensive overview of each part of the neutron monitoring instrumentation apply to a nuclear reactor, hands-on measurements on the ISIS reactor play a major role in ensuring a practical and comprehensive understanding of the neutron detection system and their integration in the safety system of nuclear reactors. It also gives a solid background for the follow up and the development of the neutron detection systems. Another field of activity of the INSTN is the development of new teaching tools using software applications. We describe hereafter two applications that have recently been developed by the institute, O.S.I.R.I.S and DOSIMEX. The INSTN and the company OREKA have developed an innovative teaching tool named O.S.I.R.I.S. The tool is built on a virtual 3D environment in which users operate in a totally free way. The action is located in a pressurised water reactor in the environment of a steam generator building. The users are students or professionals who want to learn and train on concrete situations on how to protect the workers against radiation. Through the use of this serious game, users must: establish a predictive dose evaluation, implement the principles of radiation protection, perform the dose result of the operation, analyse the gap between the predictive collective dose and the collective dose achieved, and decide about the lessons to provide feedback. Taking into account the increasing constraints related to radiation protection, it is essential to use computer codes to evaluate the dose rates generated by sources of ionizing radiation. Many powerful codes exist but are often relatively complex to implement and are dedicated to experts. In addition, these codes are often 'black boxes' that does not allow the user to understand the underlying physics. The objective of DOSIMEX codes developed by the INSTN is to give, by the means of a VBA code with a simple interface, the ability to easily conduct a wide range of radiological exposure situations: calculation of gamma, beta, neutron equivalent dose rate, calculation of internal contamination and atmospheric transfer.

Research Organization:
Institute of Electrical and Electronics Engineers - IEEE, 3 Park Avenue, 17th Floor, New York, N.Y. 10016-5997 (United States)
OSTI ID:
22531279
Report Number(s):
ANIMMA-2015-IO-228; TRN: US16V0442102220
Resource Relation:
Conference: ANIMMA 2015: 4. International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, Lisboa (Portugal), 20-24 Apr 2015; Other Information: Country of input: France
Country of Publication:
United States
Language:
English