skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron attachment and positive ion chemistry of monohydrogenated fluorocarbon radicals

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4928691· OSTI ID:22493547

Rate coefficients and product branching fractions for electron attachment and for reaction with Ar{sup +} are measured over the temperature range 300–585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF{sub 3}CHF, CHF{sub 2}CF{sub 2}, and CF{sub 3}CHFCF{sub 2}), as well as their five closed-shell precursors (1-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}Br, 1-HC{sub 3}F{sub 6}I, 2-HC{sub 3}F{sub 6}Br). Attachment to the HFC radicals is always fairly inefficient (between 0.1% and 10% of the Vogt–Wannier capture rate), but generally faster than attachment to analogous perfluorinated carbon radicals. The primary products in all cases are HF-loss to yield C{sub n}F{sub m−1}{sup −} anions, with only a minor branching to F{sup −} product. In all cases the temperature dependences are weak. Attachment to the precursor halocarbons is near the capture rate with a slight negative temperature dependence in all cases except for 2-HC{sub 2}F{sub 4}Br, which is ∼10% efficient at 300 K and becomes more efficient, approaching the capture rate at higher temperatures. All attachment kinetics are successfully reproduced using a kinetic modeling approach. Reaction of the HFC radicals with Ar{sup +} proceeds at or near the calculated collisional rate coefficient in all cases, yielding a wide variety of product ions.

OSTI ID:
22493547
Journal Information:
Journal of Chemical Physics, Vol. 143, Issue 7; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English