skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the nature of the molecular ordering of water in aqueous DMSO mixtures

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4933204· OSTI ID:22493134
;  [1]
  1. Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Université Pierre et Marie Curie, 4 Place Jussieu, F75252 Paris Cedex 05 (France)

Computer simulation studies of aqueous dimethyl sulfoxyde (DMSO) mixtures show micro-heterogeneous structures, just like aqueous alcohol mixtures. However, there is a marked difference in the aggregate structure of water between the two types of systems. While water molecules form multiconnected globular clusters in alcohols, we report herein that the typical water aggregates in aqueous DMSO mixtures are linear, favouring a 2 hydrogen bond structure per water molecule, and for all DMSO mole fractions ranging from 0.1 to 0.9. This linear-aggregate structure produces a particular signature in the water site-site structure factors, in the form of a pre-peak at k ≈ 0.2–0.8 Å{sup −1}, depending on DMSO concentration. This pre-peak is either absent in other aqueous mixtures, such as aqueous methanol mixtures, or very difficult to see through computer simulations, such as in aqueous-t-butanol mixtures. This difference in the topology of the aggregates explains why the Kirkwood-Buff integrals of aqueous-DMSO mixture look nearly ideal, in contrast with those of aqueous alcohol mixtures, suggesting a connection between the shape of the water aggregates, its fluctuations, and the concentration fluctuations. In order to further study this discrepancy between aqueous DMSO and aqueous alcohol mixture, two models of pseudo-DMSO are introduced, where the size of the sulfur atom is increased by a factor 1.6 and 1.7, respectively, hence increasing the hydrophobicity of the molecule. The study shows that these mixtures become closer to the emulsion type seen in aqueous alcohol mixtures, with more globular clustering of the water molecules, long range domain oscillations in the water-water correlations and increased water-water Kirkwood-Buff integrals. It demonstrates that the local ordering of the water molecules is influenced by the nature of the solute molecules, with very different consequences for structural properties and related thermodynamic quantities. This study illustrates the unique plasticity of water in presence of different types of solutes.

OSTI ID:
22493134
Journal Information:
Journal of Chemical Physics, Vol. 143, Issue 15; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English