skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Y-doped La{sub 0.7}Ca{sub 0.3}MnO{sub 3} manganites exhibiting a large magnetocaloric effect and the crossover of first-order and second-order phase transitions

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4933179· OSTI ID:22492803
; ; ;  [1];  [2];  [3]
  1. Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)
  2. Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)
  3. Institute of Materials Science, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

We prepared orthorhombic La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} samples (x = 0, 0.04, 0.06, and 0.08) by conventional solid-state reaction and then studied their magnetic properties and magnetocaloric (MC) effect based on magnetization versus temperature and magnetic-field measurements, M(T, H). The experimental results revealed that an x increase in La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} reduced the ferromagnetic-paramagnetic transition temperature (T{sub C}) from 260 K (for x = 0) to ∼126 K (for x = 0.08). Around the T{sub C}, maximum magnetic-entropy changes for a magnetic-field variation interval H = 50 kOe are about 10.7, 8.5, 7.4, and 5.8 J·kg{sup −1}·K{sup −1} for x = 0, 0.04, 0.06, and 0.08, respectively, corresponding to refrigerant capacities RC = 250–280 J·kg{sup −1}. These values are comparable to those of some conventional MC materials, revealing the applicability of La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} in magnetic refrigeration. Using the Arrott method and scaling hypothesis as analyzing high-field M(H, T) data, and the universal-curve construction of the magnetic entropy change, we found a magnetic-phase separation. While the samples x = 0−0.06 exhibit a first-order magnetic phase transition, x = 0.08 exhibits the crossover of the first-to-second-order phase transformation (with its critical-exponent values close to those expected for the tricritical mean-field theory) and has the presence of ferromagnetic clusters even above the T{sub C}. Such the variations in the magnetism and MC effect are related to the changes in structural parameters caused by the Y substitution for La because Y doping does not change the concentration ratio of Mn{sup 3+}/Mn{sup 4+}.

OSTI ID:
22492803
Journal Information:
Journal of Applied Physics, Vol. 118, Issue 14; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English