skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7}: Structural, spectroscopic and computational studies on a sorosilicate

Journal Article · · Journal of Solid State Chemistry
 [1]; ; ; ; ;  [1];  [2]
  1. Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck (Austria)
  2. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Department of Crystallography, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

Synthesis experiments in the system Li{sub 2}O–CaO–SiO{sub 2} resulted in the formation of single-crystals of Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7}. Structural investigations were based on single-crystal diffraction. At ambient conditions the compound has the following basic crystallographic data: hexagonal symmetry, space group P6{sub 1}22, a=5.0961(2) Å, c=41.264(2) Å, V=928.07(6) Å{sup 3}, Z=6. Structure solution was performed using direct methods. The final least-squares refinement calculations converged at a residual of R(|F|)=0.0260. From a structural point the lithium calcium silicate belongs to the group of pyrosilicates containing [Si{sub 2}O{sub 7}]-groups. Additional lithium and calcium cations are incorporated between the silicate dimers and are coordinated by four and six nearest oxygen neighbours, respectively. Each [LiO{sub 4}]-tetrahedron shares two common corners with directly neighboring tetrahedra forming zweier single-chains which are running parallel to 〈1 0 0〉 in z-levels defined by the presence of the 6{sub 1}{sup [0} {sup 0} {sup 1]}-screw axes. From the corner-sharing [LiO{sub 4}]- and [SiO{sub 4}]-moieties a three dimensional framework can be constructed. An interesting feature of this framework is the presence of an O{sup [3]}-type bridging oxygen linking three tetrahedra (one [LiO{sub 4}]- and two [SiO{sub 4}]-units). Structural similarities with other silicates are discussed in detail. The high-temperature behavior of the Si–O, Ca–O and Li–O bond distances in Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7} was investigated by in{sub -}situ single-crystal X-ray diffraction in the range between 65 and 700 °C. From the evolution of the lattice parameters, the thermal expansion tensor α{sub ij} has been determined. The structural characterization has been supplemented by micro-Raman spectroscopy. Interpretation of the spectroscopic data including the allocation of the bands to certain vibrational species has been aided by DFT-calculations. - Graphical abstract: Framework of [SiO{sub 4}]- and [LiO{sub 4}]-tetrahedra in the crystal structure of Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7}. - Highlights: • We report the crystal structure of the sorosilicate Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7} at ambient conditions. • The thermal expansion tensor as well as the evolution of the structure between 25 and 700 °C was studied. • A topological analysis of the tetrahedral framework based on [SiO{sub 4}]- and [LiO{sub 4}]-units is presented. • The crystal structure of Li{sub 2}Ca{sub 2}Si{sub 2}O{sub 7} is discussed with respect to related compounds. • Interpretation of the Raman spectra of the crystals has been aided by DFT-calculations.

OSTI ID:
22475589
Journal Information:
Journal of Solid State Chemistry, Vol. 225; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English