skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charge noise, spin-orbit coupling, and dephasing of single-spin qubits

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4901162· OSTI ID:22391948
; ;  [1]
  1. School of Physics, The University of New South Wales, Sydney 2052 (Australia)

Quantum dot quantum computing architectures rely on systems in which inversion symmetry is broken, and spin-orbit coupling is present, causing even single-spin qubits to be susceptible to charge noise. We derive an effective Hamiltonian for the combined action of noise and spin-orbit coupling on a single-spin qubit, identify the mechanisms behind dephasing, and estimate the free induction decay dephasing times T{sub 2}{sup *} for common materials such as Si and GaAs. Dephasing is driven by noise matrix elements that cause relative fluctuations between orbital levels, which are dominated by screened whole charge defects and unscreened dipole defects in the substrate. Dephasing times T{sub 2}{sup *} differ markedly between materials and can be enhanced by increasing gate fields, choosing materials with weak spin-orbit, making dots narrower, or using accumulation dots.

OSTI ID:
22391948
Journal Information:
Applied Physics Letters, Vol. 105, Issue 19; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English