skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: How does pressure gravitate? Cosmological constant problem confronts observational cosmology

Journal Article · · Journal of Cosmology and Astroparticle Physics
;  [1];  [2]
  1. Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 Canada (Canada)
  2. Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada)

An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ{sub 4} = 0.105 ± 0.049 (+highL CMB), or ζ{sub 4} = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ{sub 4}=), and also among different data sets.

OSTI ID:
22373380
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2014, Issue 08; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English

Similar Records

Planck 2015 results: XIII. Cosmological parameters
Journal Article · Tue Sep 20 00:00:00 EDT 2016 · Astronomy and Astrophysics · OSTI ID:22373380

Planck 2018 results. VI. Cosmological parameters
Journal Article · Fri Sep 11 00:00:00 EDT 2020 · Astronomy and Astrophysics · OSTI ID:22373380

Confronting the relaxation mechanism for a large cosmological constant with observations
Journal Article · Sun Jan 01 00:00:00 EST 2012 · Journal of Cosmology and Astroparticle Physics · OSTI ID:22373380