skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Static electromagnetic fields and charged black holes in general covariant theory of Hořava-Lifshitz gravity

Journal Article · · Journal of Cosmology and Astroparticle Physics
; ;  [1]
  1. GCAP-CASPER, Physics Department, Baylor University, Waco, TX 76798-7316 (United States)

In this paper, we study electromeganetic static spacetimes in the nonrelativisitc general covariant theory of the Hořava-Lifshitz (HL) gravity, proposed recently by Hořava and Melby-Thompson, and present all the electric static solutions, which represent the generalization of the Reissner-Nordström solution found in Einstein's general relativity (GR). The global/local structures of spacetimes in the HL theory in general are different from those given in GR, because the dispersion relations of test particles now contain high-order momentum terms, so the speeds of these particles are unbounded in the ultraviolet (UV). As a result, the conception of light-cones defined in GR becomes invalid and test particles do not follow geodesics. To study black holes in the HL theory, we adopt the geometrical optical approximations, and define a horizon as a (two-closed) surface that is free of spacetime singularities and on which massless test particles are infinitely redshifted. With such a definition, we show that some of our solutions give rise to (charged) black holes, although the radii of their horizons in general depend on the energies of the test particles.

OSTI ID:
22279746
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2012, Issue 02; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English