skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic properties of Zn doped Co{sub 2}Y hexaferrite by using high-field Mössbauer spectroscopy

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4865879· OSTI ID:22273799

The polycrystalline samples of Ba{sub 2}Co{sub 2−x}Zn{sub x}Fe{sub 12}O{sub 22} (x = 0.5, 1.0, 1.5) were synthesized by using solid-state-reaction method. From the XRD patterns, analyzed by Rietveld refinement, the prepared samples are found to be single-phased with rhombohedral structure (R-3m). The magnetic properties of samples were investigated with vibrating sample magnetometer, and high-field Mössbauer spectrometer. From the zero-field-cooled curves under 100 Oe between 4.2 and 740 K, we observe that the samples show spin transition from helicalmagnetic to ferrimagnetic order. With increasing Zn ion concentration, the spin transition temperature (T{sub s}) and Curie temperature (T{sub C}) decrease linearly. We have obtained Zero-field Mössbauer spectra of all samples at various temperatures ranging from 4.2 to 650 K, and analyzed the spectra below T{sub C} as six-sextets for Fe sites. From the temperature dependence of hyperfine field (H{sub hf}), we have noticed an abrupt change in H{sub hf} at T{sub s}. In addition, Mössbauer spectra of all samples at 4.2 K were taken with applied field ranging from 0 to 50 kOe, indicating the canting angle between applied field and H{sub hf} decreased with increasing Zn concentration.

OSTI ID:
22273799
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 17; Conference: 55. annual conference on magnetism and magnetic materials, Atlanta, GA (United States), 14-18 Nov 2010; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English