skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced room temperature magnetoresistance in p−La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/SrTiO{sub 3}/n−Si heterostructure: A possible spintronics application

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4873061· OSTI ID:22269382

An experimental study of p−La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/SrTiO{sub 3}/n−Si heterostructure in which La{sub 0.7}Ca{sub 0.3}MnO{sub 3} (LCMO) and Si are separated by a thin interfacial SrTiO{sub 3} (STO) layer with typical thickness ∼ 15 nm, has been in situ fabricated with the pulsed laser deposition technique. The junction exhibits good rectifying diode like behavior over the temperature range of 10 - 300 K. The heterostructure also exhibits metal-oxide-semiconductor like behavior with all type of possible current flow mechanisms through the heterojunction. The junction magnetoresistance (JMR) (∼ 30% at 300 K) properties of p-LCMO/STO/n-Si heterostructure have been studied over the temperature range of 100-300 K. The JMR is positive and strongly depends on temperature at an applied forward bias voltage of 3 V. The relation between JMR and external magnetic field is found to be Δρ/ρ≈ α H{sup β} type, having both α and β temperature dependent. We attribute the emergence of positive JMR to the quantum mechanical tunneling transport mechanism across the heterojunction.

OSTI ID:
22269382
Journal Information:
AIP Conference Proceedings, Vol. 1591, Issue 1; Conference: 58. DAE solid state physics symposium 2013, Patiala, Punjab (India), 17-21 Dec 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English