skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charge symmetric dissociation of doubly ionized N{sub 2} and CO molecules

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4861665· OSTI ID:22255248
 [1];  [2]
  1. Physical Research Laboratory, Ahmedabad 380009 (India)
  2. Indian Institute of Science Education and Research, Mohali, Sector 81, SAS Nagar 140306 (India)

We report a comparative study of the features in dissociative double ionization by high energy electron impact of N{sub 2} and CO molecules. The ratio of cross-section of charge symmetric dissociative ionization to non-dissociative ionization (CSD-to-ND ratio) and the kinetic energy release (KER) spectra of dissociation are experimentally measured and carefully corrected for various ion transmission losses and detector inefficiencies. Given that the double ionization cross sections of these iso-electronic diatomics are very similar, the large difference in the CSD-to-ND ratios must be attributable to the differences in the evolution dynamics of the dications. To understand these differences, potential energy curves (PECs) of dications have been computed using multi-reference configuration interaction method. The Franck-Condon factors and tunneling life times of vibrational levels of dications have also been computed. While the KER spectrum of N{sub 2}{sup ++} can be readily explained by considering dissociation via repulsive states and tunneling of meta-stable states, indirect dissociation processes such as predissociation and autoionization have to be taken into account to understand the major features of the KER spectrum of CO{sup ++}. Direct and indirect processes identified on the basis of the PECs and experimental KER spectra also provide insights into the differences in the CSD-to-ND ratios.

OSTI ID:
22255248
Journal Information:
Journal of Chemical Physics, Vol. 140, Issue 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English