skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [2];  [3];  [4];  [5]
  1. Department of Neurology, University of Duisburg-Essen (Germany)
  2. Institute of Physiology, Justus-Liebig-University Giessen (Germany)
  3. Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany)
  4. Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria)
  5. Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium chloride before the inhibition of ATP synthesis abolished both phases of the 2-DG-induced [Ca{sup 2+}]{sub i} increase. This effect was not observed when lithium chloride was added simultaneously with 2-DG. We conclude that lithium chloride abolishes the injurious [Ca{sup 2+}]{sub i} overload in EC and that this most likely occurs by preventing inositol 3-phosphate-sensitive Ca{sup 2+}-release from the endoplasmic reticulum. Though further research is needed, these findings provide a novel option for therapeutic strategies to protect the endothelium against imminent barrier failure.

OSTI ID:
22239570
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 434, Issue 2; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English

Similar Records

Lead inhibition of Mg/sup 2 +/-ATP-dependent calcium transport in rat liver plasma membranes
Conference · Sat Mar 01 00:00:00 EST 1986 · Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States) · OSTI ID:22239570

Evidence for increased permeability of rat liver plasma membrane vesicles after CCl/sub 4/ in vivo
Conference · Sat Mar 01 00:00:00 EST 1986 · Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States) · OSTI ID:22239570

Structural Basis for Inhibition of Mammalian Adenylyl Cyclase by Calcium
Journal Article · Fri Sep 11 00:00:00 EDT 2009 · Biochemistry-US · OSTI ID:22239570