skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Defects clustering and ordering in di- and trivalently doped ceria

Journal Article · · Materials Research Bulletin
 [1];  [1];  [2];  [3]
  1. Global Research Center for Environment and Energy Based on Nanomaterials Science, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan)
  2. Division of Materials, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 (Australia)
  3. Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 (Australia)

Graphical abstract: Display Omitted Highlights: ► Defect structures in trivalently and divalently doped ceria has been elucidated. ► Dumbbell structure is a universal basic vacancy structure in fluorite oxides. ► Electrostatic attraction dominates elastic interaction in doped ceria. ► Provide a physical picture of conductivity behavior in aliovalently doped ceria. -- Abstract: The formation and growth of defect clusters in CeO{sub 2}-M{sub 2}O{sub 3} (M = La{sup 3+}, Pr{sup 3+}, Sm{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Y{sup 3+}, Yb{sup 3+}) and CeO{sub 2}-DO (N = Cd{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, Ba{sup 2+}) binary solid solutions have been comparatively studied by atomistic simulations based on energy minimization of atomic interactions. The calculation ensemble, including both divalent and trivalent dopants, shows a similar energetic tendency for defect species (dopants and associated oxygen vacancies) to aggregate and grow. The dumbbell structure has been verified as a universal vacancy structure in oxygen deficient fluorite lattice. Nevertheless, it also demonstrates different tendencies of dopant–vacancy associations that depend on dopant valence and radius. The dopant is site-selective in trivalent defect clusters correlated with dopant size. While in divalent solid solutions, clusters adopt similar dopant–vacancy locations. Furthermore, all clusters in divalently doped ceria have stronger dopant–vacancy associations/interactions compared to those in trivalent ones. As a consequence, the correlation of the dopant size as well as valence effects on oxygen-ion conductivity has been illustrated based on an ordered defect cluster model. This study thereby offers insight into the physical picture of ionic conductivity behavior experimentally obtained in aliovalently doped ceria.

OSTI ID:
22215856
Journal Information:
Materials Research Bulletin, Vol. 48, Issue 2; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English