skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Gd dopant concentration on the defect engineering in ceria nanostructures

Journal Article · · Materials Research Bulletin
;  [1];  [2]
  1. National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025 (India)
  2. Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology, and Research), 3 Research Link, Singapore 117602 (Singapore)

Graphical abstract: Display Omitted Highlights: ► Investigates the ionic conductivity of defect engineered Gd doped nano scale ceria. ► Reveals that there exists an optimum concentration of dopant to engineer ceria with large O{sub 2} vacancies. ► For the first time the Nanosponge morphology observed in the Gd doped nanoceria. ► It is observed that 5% of Gd in ceria is optimum to induce appropriate amount of defects. ► Thereby an enhanced ionic conductivity is achieved in 5% Gd doped ceria. -- Abstract: In this study, the fabrication and characterization of pure and gadolinium (Gd) doped ceria nanostructures (Ce{sub 1−x}Gd{sub x}O{sub 2−δ} where x = 0.05, 0.1 and 0.2) are investigated. The origin of defect formation has been systematically investigated by XRD and UV-Visible Raman. All the fabricated ceria are found to be “Nanosponge” morphology which is observed by using FESEM technique. The charge transfer of O{sup 2−} ions and Ce{sup 3+}/Ce{sup 4+} in the ceria host due to these defect structures are studied by UV–DRS. Impedance analysis is showed an enhanced ionic conductivity for 5% Gd doped ceria compared to other concentration of Gd, revealing that the dopant concentration is a critical parameter in engineering a large number of vacancy defects in ceria nanostructures.

OSTI ID:
22215683
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 12; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English