skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetic simulations of argon dusty plasma afterglow including metastable atom kinetics

Journal Article · · Journal of Experimental and Theoretical Physics
;  [1]
  1. Siberian Branch of the Russian Academy of Sciences, Institute of Theoretical and Applied Mechanics (Russian Federation)

The afterglow of a dusty plasma of rf discharge in argon is simulated by the particle-in-cell-Monte Carlo collision (PIC-MCC) method. The experimental observation that heavy dust contamination of plasma leads to an anomalous increase in the electron density at the beginning of afterglow is explained by release of electrons from the dust surface. Under the assumption that the floating potential of particles is in equilibrium with plasma conditions, the fast cooling of electrons in afterglow plasma due to a rapid escape of hot electrons from the volume leads to a decrease in the magnitude of the floating potential and hence to a loss of charge by dust. The intensive desorption of electrons from nanoparticles is the origin of anomalous behavior of the electron density. At the next stage of afterglow, when the electrons become cool, the plasma decay is defined by ambipolar diffusion. The effect of metastable argon atoms is also considered. Additional ionization due to metastable atom collisions affects the electron temperature but does not change the behavior of the electron density qualitatively.

OSTI ID:
22126550
Journal Information:
Journal of Experimental and Theoretical Physics, Vol. 116, Issue 4; Other Information: Copyright (c) 2013 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7761
Country of Publication:
United States
Language:
English