skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Clinical implementation of a digital tomosynthesis-based seed reconstruction algorithm for intraoperative postimplant dose evaluation in low dose rate prostate brachytherapy

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.3245888· OSTI ID:22102155
; ; ; ; ; ; ;  [1]
  1. Medical Physics Unit, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada) and Departement de Radio-Oncologie, Centre Hospitalier de l'Universite de Montreal, 1560 rue Sherbrooke Est, Quebec, Montreal, Quebec H2L 4M1 (Canada)

Purpose: The low dose rate brachytherapy procedure would benefit from an intraoperative postimplant dosimetry verification technique to identify possible suboptimal dose coverage and suggest a potential reimplantation. The main objective of this project is to develop an efficient, operator-free, intraoperative seed detection technique using the imaging modalities available in a low dose rate brachytherapy treatment room. Methods: This intraoperative detection allows a complete dosimetry calculation that can be performed right after an I-125 prostate seed implantation, while the patient is still under anesthesia. To accomplish this, a digital tomosynthesis-based algorithm was developed. This automatic filtered reconstruction of the 3D volume requires seven projections acquired over a total angle of 60 deg. with an isocentric imaging system. Results: A phantom study was performed to validate the technique that was used in a retrospective clinical study involving 23 patients. In the patient study, the automatic tomosynthesis-based reconstruction yielded seed detection rates of 96.7% and 2.6% false positives. The seed localization error obtained with a phantom study is 0.4{+-}0.4 mm. The average time needed for reconstruction is below 1 min. The reconstruction algorithm also provides the seed orientation with an uncertainty of 10 deg. {+-}8 deg. The seed detection algorithm presented here is reliable and was efficiently used in the clinic. Conclusions: When combined with an appropriate coregistration technique to identify the organs in the seed coordinate system, this algorithm will offer new possibilities for a next generation of clinical brachytherapy systems.

OSTI ID:
22102155
Journal Information:
Medical Physics, Vol. 36, Issue 11; Other Information: (c) 2009 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English