skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cl atom recombination on silicon oxy-chloride layers deposited on chamber walls in chlorine-oxygen plasmas

Journal Article · · Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
DOI:https://doi.org/10.1116/1.4742322· OSTI ID:22098982
; ;  [1]
  1. Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 (United States)

Chlorine atom recombination coefficients were measured on silicon oxy-chloride surfaces deposited in a chlorine inductively coupled plasma (ICP) with varying oxygen concentrations, using the spinning wall technique. A small cylinder embedded in the walls of the plasma reactor chamber was rapidly rotated, repetitively exposing its surface to the plasma chamber and a differentially pumped analysis chamber housing a quadruple mass spectrometer for line-of-sight desorbing species detection, or an Auger electron spectrometer for in situ surface analysis. The spinning wall frequency was varied from 800 to 30 000 rpm resulting in a detection time, t (the time a point on the surface takes to rotate from plasma chamber to the position facing the mass or Auger spectrometer), of {approx}1-40 ms. Desorbing Cl{sub 2}, due to Langmuir-Hinshelwood (LH) Cl atom recombination on the reactor wall surfaces, was detected by the mass spectrometer and also by a pressure rise in one of the differentially pumped chambers. LH Cl recombination coefficients were calculated by extrapolating time-resolved desorption decay curves to t = 0. A silicon-covered electrode immersed in the plasma was either powered at 13 MHz, creating a dc bias of -119 V, or allowed to electrically float with no bias power. After long exposure to a Cl{sub 2} ICP without substrate bias, slow etching of the Si wafer coats the chamber and spinning wall surfaces with an Si-chloride layer with a relatively small amount of oxygen (due to a slow erosion of the quartz discharge tube) with a stoichiometry of Si:O:Cl = 1:0.38:0.38. On this low-oxygen-coverage surface, any Cl{sub 2} desorption after LH recombination of Cl was below the detection limit. Adding 5% O{sub 2} to the Cl{sub 2} feed gas stopped etching of the Si wafer (with no rf bias) and increased the oxygen content of the wall deposits, while decreasing the Cl content (Si:O:Cl = 1:1.09:0.08). Cl{sub 2} desorption was detectable for Cl recombination on the spinning wall surface coated with this layer, and a recombination probability of {gamma}{sub Cl} = 0.03 was obtained. After this surface was conditioned with a pure oxygen plasma for {approx}60 min, {gamma}{sub Cl} increased to 0.044 and the surface layer was slightly enriched in oxygen fraction (Si:O:Cl = 1:1.09:0.04). This behavior is attributed to a mechanism whereby Cl LH recombination occurs mainly on chlorinated oxygen sites on the silicon oxy-chloride surface, because of the weak Cl-O bond compared to the Cl-Si bond.

OSTI ID:
22098982
Journal Information:
Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films, Vol. 30, Issue 5; Other Information: (c) 2012 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0734-2101
Country of Publication:
United States
Language:
English

Similar Records

Interactions of chlorine plasmas with silicon chloride-coated reactor walls during and after silicon etching
Journal Article · Sat Sep 15 00:00:00 EDT 2012 · Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films · OSTI ID:22098982

Critical review: Plasma-surface reactions and the spinning wall method
Journal Article · Sat Jan 15 00:00:00 EST 2011 · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films · OSTI ID:22098982

Chamber wall interactions with HBr/Cl{sub 2}/O{sub 2} plasmas
Journal Article · Wed Jul 15 00:00:00 EDT 2015 · Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films · OSTI ID:22098982