skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of magnetic-pole-enhanced inductively coupled nitrogen-argon plasmas

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4754509· OSTI ID:22089449
;  [1]; ;  [2]
  1. Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320 (Pakistan)
  2. National Centre for Physics, Quaid-i-Azam University Campus Islamabad, Islamabad 45320 (Pakistan)

This article presented the features of the mixed mode and H mode in magnetic pole enhanced, inductively coupled Ar-N{sub 2} plasmas using RF-compensated Langmuir probe measurements. To fully characterize plasma parameters and electron energy probability functions (EEPFs), the gas pressure and argon content were varied. It was observed that with increasing the nitrogen content and gas pressure, the critical RF power to sustain H mode increases; this increase was more prominent for pure nitrogen discharge at higher pressure. The electron number density (n{sub e}) shows increasing trend with increasing RF power, while at higher gas pressures, the electron number density decreases at fixed RF power. Mostly, the EEPFs show a Maxwellian distribution even at low RF power (for higher argon content in the discharge) and at moderate RF power (for higher or pure nitrogen content in the discharge) for pressures of 15-60 mTorr. With increasing the nitrogen content in the mixture, the low energy part of the EEPF is more Druyvesteyn with a distorted high energy tail at low RF power. At fixed RF power, the slope of EEPF changes sharply with increasing pressure. It was observed that in hybrid mode, the EEPF at higher gas pressure (75 mTorr) in a pure nitrogen discharge shows a flat hole near the average electron energy of 3 eV and changes to Maxwellian distribution in H mode. The skin depth versus RF power shows that the skin depth is smaller than the critical dimension of the chamber, regardless of the gas type and the gas pressure.

OSTI ID:
22089449
Journal Information:
Journal of Applied Physics, Vol. 112, Issue 6; Other Information: (c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English