skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis of oxidation resistant lead nanoparticle films by modified pulsed laser ablation

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4739873· OSTI ID:22069142
; ; ; ;  [1]
  1. Research Institute, University of Dayton, Dayton, OH 45469-0170 (United States)

Thin layers of lead nanoparticles have been produced by a modified pulsed laser ablation (PLA) process in which smaller nanoparticles were swept out of the ablation chamber by a stream of flowing Ar. Large ({mu}m-sized) particles, which are usually deposited during the standard PLA process, were successfully eliminated from the deposit. The nanoparticles deposited on room temperature substrates were well distributed, and the most probable particle diameter was in the order of 30 nm. Since lead is highly reactive, the nanoparticles formed in Ar were quickly oxidized upon exposure to air. A small partial pressure of H{sub 2}S gas was subsequently added to the effluent, downstream from the ablation chamber, and this resulted in the formation of nanoparticle deposits that were surprisingly oxidation resistant. The properties of the nanoparticle films (as determined by transmission electron microscopy, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and conductivity measurements) are reported, and the mechanism of the oxidation retardation process is discussed.

OSTI ID:
22069142
Journal Information:
AIP Conference Proceedings, Vol. 1464, Issue 1; Conference: International symposium on high power laser ablation 2012, Santa Fe, NM (United States), 30 Apr - 3 May 2012; Other Information: (c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English