skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of reactive sputter deposition conditions on crystallization of zirconium oxide thin films

Journal Article · · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films
DOI:https://doi.org/10.1116/1.3119669· OSTI ID:22050991
; ; ;  [1]
  1. Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

Zirconium oxide thin films were prepared through reactive magnetron sputtering with a zirconium target using pulsed-dc and radio frequency (rf) sources. The film crystallization was studied with respect to sputtering growth variables such as sputtering power, sputtering pressure, source frequency, oxygen pressure, substrate temperature, and substrate material. The crystallization was studied through x-ray diffraction (XRD) 2{theta} scans and was quantified with peak full width at half maximum and crystallite size. Crystallization of the films was found to occur over a broad range of sputter deposition parameters, while the amorphous phase was produced only at high sputtering pressure and low sputtering power. With a decrease in sputtering pressure or power, the crystallite size decreased. Energy dispersive x-ray spectroscopy, electron microscopy, and XRD analysis revealed that at very low pressures, these films are polyphase assemblages of cubic phases of oxygen deficient zirconium oxides such as ZrO and Zr{sub 2}O. When the sputtering oxygen content of these films is increased above 25%, monoclinic-ZrO{sub 2} phase is stabilized in the films and the deposition rate decreases. However, in the case of rf sputtering, an additional peak corresponding to tetragonal phase of ZrO{sub 2} is observed. The sputtering parameters were related to physical parameters such as sputtering mode, ion energy, and substrate temperature, which influence crystallinity.

OSTI ID:
22050991
Journal Information:
Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films, Vol. 27, Issue 3; Other Information: (c) 2009 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1553-1813
Country of Publication:
United States
Language:
English