skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactions between chlorine atom and acetylene in solid para-hydrogen: Infrared spectrum of the 1-chloroethyl radical

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.3653988· OSTI ID:22038749
 [1];  [1]
  1. Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

We applied infrared matrix isolation spectroscopy to investigate the reactions between Cl atom and acetylene (C{sub 2}H{sub 2}) in a para-hydrogen (p-H{sub 2}) matrix at 3.2 K; Cl was produced via photodissociation at 365 nm of matrix-isolated Cl{sub 2} in situ. The 1-chloroethyl radical ({center_dot}CHClCH{sub 3}) and chloroethene (C{sub 2}H{sub 3}Cl) are identified as the main products of the reaction Cl + C{sub 2}H{sub 2} in solid p-H{sub 2}. IR absorption lines at 738.2, 1027.6, 1283.4, 1377.1, 1426.6, 1442.6, and 2861.2 cm{sup -1} are assigned to the 1-chloroethyl radical. For the reaction of Cl + C{sub 2}D{sub 2}, lines due to the {center_dot}CDClCH{sub 2}D radical and trans-CHDCDCl are observed; the former likely has a syn-conformation. These assignments are based on comparison of observed vibrational wavenumbers and {sup 13}C- and D-isotopic shifts with those predicted with the B3LYP/aug-cc-pVDZ and MP2/aug-cc-pVDZ methods. Our observation indicates that the primary addition product of Cl + C{sub 2}H{sub 2}, 2-chlorovinyl ({center_dot}CHCHCl) reacts readily with a neighboring p-H{sub 2} molecule to form {center_dot}CHClCH{sub 3} and C{sub 2}H{sub 3}Cl. Observation of {center_dot}CDClCH{sub 2}D and trans-CHDCDCl from Cl + C{sub 2}D{sub 2} further supports this conclusion. Although the reactivity of p-H{sub 2} appears to be a disadvantage for making highly reactive free radicals in solid p-H{sub 2}, the formation of 1-chloroethyl radical indicates that this secondary reaction might be advantageous in producing radicals that are difficult to prepare from simple photolysis or bimolecular reactions in situ.

OSTI ID:
22038749
Journal Information:
Journal of Chemical Physics, Vol. 135, Issue 17; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English