skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: KECK SPECTROSCOPY OF FAINT 3 < z < 7 LYMAN BREAK GALAXIES. III. THE MEAN ULTRAVIOLET SPECTRUM AT z {approx_equal} 4

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Astronomy Department, California Institute of Technology, MC249-17, Pasadena, CA 91125 (United States)
  2. Institute of Astronomy, Cambridge CB3 0HA (United Kingdom)

We present and discuss the mean rest-frame ultraviolet spectrum for a sample of 81 Lyman break galaxies (LBGs) selected to be B-band dropouts at z {approx_equal} 4. The sample is mostly drawn from our ongoing Keck/DEIMOS survey in the GOODS fields and augmented with archival Very Large Telescope data. In general, we find similar spectroscopic trends to those found in earlier surveys of LBGs at z = 3. Specifically, low-ionization absorption lines which trace neutral outflowing gas are weaker in galaxies with stronger Ly{alpha} emission, bluer UV spectral slopes, lower stellar masses, lower UV luminosities, and smaller half-light radii. This is consistent with a physical picture whereby star formation drives outflows of neutral gas which scatter Ly{alpha} and produce strong low-ionization absorption lines, while increasing galaxy stellar mass, size, metallicity, and dust content. Typical galaxies are thus expected to have stronger Ly{alpha} emission and weaker low-ionization absorption at earlier times, and we indeed find somewhat weaker low-ionization absorption at higher redshifts. In conjunction with earlier results from our survey, we argue that the reduced low-ionization absorption is likely caused by lower covering fraction and/or velocity range of outflowing neutral gas at earlier epochs. Although low-ionization absorption decreases at higher redshift, fine-structure emission lines are stronger, suggesting a greater concentration of neutral gas at small galactocentric radius ({approx}< 5 kpc). Our continuing survey will enable us to extend these diagnostics more reliably to higher redshift and determine the implications for the escape fraction of ionizing photons which governs the role of early galaxies in cosmic reionization.

OSTI ID:
22037225
Journal Information:
Astrophysical Journal, Vol. 751, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English