skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE ROLE OF KOZAI CYCLES IN NEAR-EARTH BINARY ASTEROIDS

Journal Article · · Astronomical Journal (New York, N.Y. Online)
;  [1]
  1. Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

We investigate the Kozai mechanism in the context of near-Earth binaries and the Sun. The Kozai effect can lead to changes in eccentricity and inclination of the binary orbit, but it can be weakened or completely suppressed by other sources of pericenter precession, such as the oblateness of the primary body. Through numerical integrations including primary oblateness and three bodies (the two binary components and the Sun), we show that Kozai cycles cannot occur for the closely separated near-Earth binaries in our sample. We demonstrate that this is due to pericenter precession around the oblate primary, even for very small oblateness values. Since the majority of observed near-Earth binaries are not well separated, we predict that Kozai cycles do not play an important role in the orbital evolution of most near-Earth binaries. For a hypothetical wide binary modeled after 1998 ST27, the separation is large at 16 primary radii and so the orbital effects of primary oblateness are lessened. For this wide binary, we illustrate the possible excursions in eccentricity and inclination due to Kozai cycles as well as depict stable orientations for the binary's orbital plane. Unstable orientations lead to collisions between binary components, and we suggest that the Kozai effect acting in wide binaries may be a route to the formation of near-Earth contact binaries.

OSTI ID:
22034698
Journal Information:
Astronomical Journal (New York, N.Y. Online), Vol. 143, Issue 3; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1538-3881
Country of Publication:
United States
Language:
English