skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SIZES, HALF-MASS DENSITIES, AND MASS FUNCTIONS OF STAR CLUSTERS IN THE MERGER REMNANT NGC 1316: CLUES TO THE FATE OF SECOND-GENERATION GLOBULAR CLUSTERS

Journal Article · · Astrophysical Journal
 [1]
  1. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

We study mass functions of globular clusters derived from Hubble Space Telescope/Advanced Camera for Surveys images of the early-type merger remnant galaxy NGC 1316, which hosts a significant population of metal-rich globular clusters of intermediate age ({approx}3 Gyr). For the old, metal-poor ({sup b}lue{sup )} clusters, the peak mass of the mass function M{sub p} increases with internal half-mass density {rho}{sub h} as M{sub p}{proportional_to}{rho}{sub h}{sup 0.44}, whereas it stays approximately constant with galactocentric distance R{sub gal}. The mass functions of these clusters are consistent with a simple scenario in which they formed with a Schechter initial mass function and evolved subsequently by internal two-body relaxation. For the intermediate-age population of metal-rich ({sup r}ed{sup )} clusters, the faint end of the previously reported power-law luminosity function of the clusters with R{sub gal} > 9 kpc is due to many of those clusters having radii larger than the theoretical maximum value imposed by the tidal field of NGC 1316 at their R{sub gal}. This renders disruption by two-body relaxation ineffective. Only a few such diffuse clusters are found in the inner regions of NGC 1316. Completeness tests indicate that this is a physical effect. Using comparisons with star clusters in other galaxies and cluster disruption calculations using published models, we hypothesize that most red clusters in the low-{rho}{sub h} tail of the initial distribution have already been destroyed in the inner regions of NGC 1316 by tidal shocking, and that several remaining low-{rho}{sub h} clusters will evolve dynamically to become similar to 'faint fuzzies' that exist in several lenticular galaxies. Finally, we discuss the nature of diffuse red clusters in early-type galaxies.

OSTI ID:
22034478
Journal Information:
Astrophysical Journal, Vol. 750, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English