skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ON THE MIGRATION OF JUPITER AND SATURN: CONSTRAINTS FROM LINEAR MODELS OF SECULAR RESONANT COUPLING WITH THE TERRESTRIAL PLANETS

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London (United Kingdom)
  2. Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)

We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. Using a modified secular model we have identified six secular resonances between the {nu}{sub 5} frequency of Jupiter and Saturn and the four apsidal eigenfrequencies of the terrestrial planets (g{sub 1-4}). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. Because of the small amplitudes of the j = 2, 3 terrestrial eigenmodes the g{sub 2} - {nu}{sub 5} and g{sub 3} - {nu}{sub 5} resonances provide the strongest constraints on giant planet migration. If Jupiter and Saturn migrated with eccentricities comparable to their present-day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration ({tau} {approx} 5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g., {tau} {approx}< 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j = 2, 3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Results of orbital integrations show that very short migration timescales ({tau} < 0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets' eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9 {+-} 0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant planet migration to be complete in the first 30-100 Myr of solar system history.

OSTI ID:
22011890
Journal Information:
Astrophysical Journal, Vol. 745, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS
Journal Article · Sat Aug 10 00:00:00 EDT 2013 · Astrophysical Journal · OSTI ID:22011890

EVIDENCE FROM THE ASTEROID BELT FOR A VIOLENT PAST EVOLUTION OF JUPITER'S ORBIT
Journal Article · Mon Nov 15 00:00:00 EST 2010 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:22011890

Tilting Saturn without tilting Jupiter: Constraints on giant planet migration
Journal Article · Sun Nov 01 00:00:00 EDT 2015 · The Astronomical Journal (Online) · OSTI ID:22011890