skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

Journal Article · · Journal of Solid State Chemistry
 [1];  [2];  [2];  [2];  [3]
  1. Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States)
  2. Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States)
  3. Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi{sub 2-x}Sb{sub x}Te{sub 3}) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi{sub 2-x}Sb{sub x}Te{sub 3} matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties. - Graphical abstract: PbTe nanoparticles introduced into p-type Bi{sub 2}Te{sub 3} by incipient wetness results in decreased lattice thermal conductivity, but also acts as an electronic dopant, resulting in an overall decrease in thermoelectric performance. Highlights: Black-Right-Pointing-Pointer Composites of PbTe nanoparticles in Bi{sub 2-x}Sb{sub x}Te{sub 3} were formed by incipient wetness. Black-Right-Pointing-Pointer PbTe nanoparticles leads to decreased {kappa}{sub l}, consistent with phonon scattering. Black-Right-Pointing-Pointer PbTe nanoparticles lead to decreased S and {rho}, due to increased carriers. Black-Right-Pointing-Pointer Collateral doping from PbTe leads to decreased ZT with increasing concentration. Black-Right-Pointing-Pointer Immiscible systems are preferred for improved ZT.

OSTI ID:
21612815
Journal Information:
Journal of Solid State Chemistry, Vol. 184, Issue 12; Other Information: DOI: 10.1016/j.jssc.2011.09.031; PII: S0022-4596(11)00524-X; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English