skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Can the standard model CP violation near the W bags explain the cosmological baryonic asymmetry?

Journal Article · · Physical Review. D, Particles Fields
;  [1]
  1. Department of Physics, State University of New York, Stony Brook, New York 11794 (United States)

In the scenario of cold electroweak baryogenesis, oscillations of the Higgs field lead to metastable domains of unbroken phase where the Higgs field nearly vanishes. Those domains have also been identified with the W-t-t bags, a nontopological solitons made of large number ({approx}1000) of gauge quanta and heavy (top and antitop) quarks. As real-time numerical studies had shown, sphalerons (topological transition events violating the baryon number) occur only inside those bags. In this work we estimate the amount of CP violation in this scenario coming from the standard model, via the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix, resulting in top-minus-antitop difference of the population in the bags. Since these tops/antitops are recycled by sphalerons, this population difference leads directly to the baryonic asymmetry of the Universe. We look at the effect appearing in the 4th order in weak W diagrams describing interference of different quark flavor contributions. We found that there are multiple cancellations of diagrams and clearly sign-definite effect appears only in the 6th-order expansion over flavor-dependent phases. We then estimate contributions to these diagrams in which weak interaction occurs (i) inside, (ii) near and (iii) far from the W-t-t b-bags, optimizing the contributions in each of them. We conclude that the second (near) scenario is the dominant one, producing CP violation of the order of 10{sup -10}, in our crude estimates. Together with the baryon violation rate of about 10{sup -2}, previously demonstrated for this scenario, it puts the resulting asymmetry close to what is needed to explain the observed baryonic asymmetry in the Universe. Our answer also has a definite sign, which apparently seems to be the correct one.

OSTI ID:
21607749
Journal Information:
Physical Review. D, Particles Fields, Vol. 84, Issue 7; Other Information: DOI: 10.1103/PhysRevD.84.073003; (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English