skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices

Journal Article · · Physical Review. A
;  [1];  [1];  [1];  [2]
  1. Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France)
  2. Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

We present a comprehensive study of the thermodynamic properties of the three-dimensional fermionic Hubbard model, with application to cold fermionic atoms subject to an optical lattice and a trapping potential. Our study is focused on the temperature range of current experimental interest. We employ two theoretical methods - dynamical mean-field theory and high-temperature series - and perform comparative benchmarks to delimit their respective range of validity. Special attention is devoted to understand the implications that thermodynamic properties of this system have on cooling. Considering the distribution function of local occupancies in the inhomogeneous lattice, we show that, under adiabatic evolution, the variation of any observable (e.g., temperature) can be conveniently disentangled into two distinct contributions. The first contribution is due to the redistribution of atoms in the trap during the evolution, while the second one comes from the intrinsic change of the observable. Finally, we provide a simplified picture of a recently proposed cooling procedure, based on spatial entropy separation, by applying this method to an idealized model.

OSTI ID:
21537196
Journal Information:
Physical Review. A, Vol. 83, Issue 2; Other Information: DOI: 10.1103/PhysRevA.83.023606; (c) 2011 American Institute of Physics; ISSN 1050-2947
Country of Publication:
United States
Language:
English