skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of partial anion substitution on the thermoelectric properties of silver(I) chalcogenide halides in the system Ag{sub 5}Q{sub 2}X with Q=Te, Se and S and X=Br and Cl

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]; ; ;  [2]
  1. TU Muenchen, Lichtenbergstrasse 4, Garching (Germany)
  2. CNRS, Universite de Bordeaux, ICMCB, Avenue du Docteur Schweitzer 87, 33608 PESSAC cedex (France)

A selection of mixed conducting silver chalcogenide halides of the general formula Ag{sub 5}Q{sub 2}X with Q=sulfur, selenium and tellurium and X=chlorine and bromine has been investigated due to their thermoelectric properties. Recently, the ternary counterpart Ag{sub 5}Te{sub 2}Cl showed a defined d{sup 10}-d{sup 10} interaction in the disordered cation substructure at elevated temperatures where Ag{sub 5}Te{sub 2}Cl is present in its high temperature {alpha}-phase. A significant drop of the thermal diffusivity has been observed during the {beta}-{alpha} phase transition reducing the values from 0.12 close to 0.08 mm{sup 2} s{sup -1}. At the same transition the thermopower reacts on the increasing silver mobility and jumps towards less negative values. Thermal conductivities, thermopower and thermal diffusivity of selected compounds with various grades of anion substitution in Ag{sub 5}Q{sub 2}X were determined around the silver-order/disorder {beta}-{alpha} phase transition. A formation of attractive interactions could be observed for selenium substituted phases while no effect was detected for bromide and sulfide samples. Depending on the grade and type of substitution the thermopower changes significantly at and after the {beta}-{alpha} phase transition. Thermal conductivities are low reaching values around 0.2-0.3 W m{sup -1} K{sup -1} at 299 K. Partial anion exchange can substantially tune the thermoelectric properties in Ag{sub 5}Q{sub 2}X phases. -- Graphical abstract: A structure section of the {alpha}-Ag{sub 5}Te{sub 2}Cl structure type and the thermopower evolution of Ag{sub 5}Te{sub 2}Cl{sub 0.4}Br{sub 0.6} undergoing a silver ion order/disorder phase transition. Display Omitted Research highlights: > We report on thermoelectric properties of silver(I) chalcogenide halides. > We examine thermopower, thermal diffusivity and thermal behavior. > Silver mobility, phase transitions and order/disorder phenomena are discussed. > Partial anion exchange can tune thermoelectric properties significantly.

OSTI ID:
21504059
Journal Information:
Journal of Solid State Chemistry, Vol. 184, Issue 4; Other Information: DOI: 10.1016/j.jssc.2011.01.031; PII: S0022-4596(11)00042-9; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English